Experimental and Numerical Evaluation of the Mechanical Behavior of Strongly Anisotropic Light-Weight Metallic Fiber Structures under Static and Dynamic Compressive Loading

نویسندگان

  • Olaf Andersen
  • Matej Vesenjak
  • Thomas Fiedler
  • Ulrike Jehring
  • Lovre Krstulović-Opara
چکیده

Rigid metallic fiber structures made from a variety of different metals and alloys have been investigated mainly with regard to their functional properties such as heat transfer, pressure drop, or filtration characteristics. With the recent advent of aluminum and magnesium-based fiber structures, the application of such structures in light-weight crash absorbers has become conceivable. The present paper therefore elucidates the mechanical behavior of rigid sintered fiber structures under quasi-static and dynamic loading. Special attention is paid to the strongly anisotropic properties observed for different directions of loading in relation to the main fiber orientation. Basically, the structures show an orthotropic behavior; however, a finite thickness of the fiber slabs results in moderate deviations from a purely orthotropic behavior. The morphology of the tested specimens is examined by computed tomography, and experimental results for different directions of loading as well as different relative densities are presented. Numerical calculations were carried out using real structural data derived from the computed tomography data. Depending on the direction of loading, the fiber structures show a distinctively different deformation behavior both experimentally and numerically. Based on these results, the prevalent modes of deformation are discussed and a first comparison with an established polymer foam and an assessment of the applicability of aluminum fiber structures in crash protection devices is attempted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental and Numerical Buckling Analysis of Carbon Fiber Composite Lattice Conical Structure before and after Lateral Impact

In this research, the numerical and experimental analysis of the carbon fiber composite lattice conical structure has been performed to assess the buckling stability of the structure before and after the lateral impact. In the experimental analysis, the carbon fiber composite lattice conical structure was constructed with the winding method and using elastic molds and metal mandrel. In or...

متن کامل

On the effect of grain size on rock behavior under cyclic loading by distinct element method

It is well-known that the mechanical behavior of rocks under cyclic loading is much different from static loading conditions. In most constructions, the load applied to structures is within dynamic ranges. That’s why a great deal of attention has been paid towards this field in order to identify the dynamic behavior of rocks in more details. Nevertheless, the nature of dynamic failure in rocks ...

متن کامل

Determination of Residual Stress for Single and Double Autofrettage of Thick-walled FG Cylinders Subjected to Dynamic Loading

In the present article a numerical procedure is developed for dynamic analysis of single and double autofrettage of thick–walled FG cylinders under transient loading. The governing differential equations are discretized and presented in explicit Lagrangian formalism. The explicit transient solution of discrete equations are obtained on the meshed region and results for stress and strain distrib...

متن کامل

A numerical and experimental study on buckling and post-buckling of cracked plates under axial compression load

Existence of cracks in industrial structures is one of the important causes of their failure, especially when they are subjected to important axial compressive forces that might lead to buckling. Therefore, it must be considered in stress analysis and designing and loading of such structures. In this paper, the buckling and post-buckling behaviors of stainless-steel cracked plates under axial c...

متن کامل

Energy Absorption Analysis and Multi-objective Optimization of Tri-layer Cups Subjected to Quasi-static Axial Compressive Loading

In this paper, the energy absorption features of tri-layer explosive-welded deep-drawn cups subjected to quasi-static axial compressive loading are investigated numerically and experimentally. To produce the cups, tri-layer blanks composed of aluminum and stainless steel alloys were fabricated by an explosive-welding process and formed by a deep drawing setup. The quasi-static tests were carrie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016